Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros










Intervalo de año de publicación
1.
Rev. Fac. Med. UNAM ; 60(4): 7-18, jul.-ago. 2017. tab, graf
Artículo en Español | LILACS | ID: biblio-957125

RESUMEN

Resumen En la actualidad, México ocupa el primer lugar con obesidad infantil y el segundo con obesidad en el adulto. Este fenómeno ya ha alcanzado niveles de pandemia, por lo que de no evitar que continúe aumentando el número de pacientes obesos, en pocos años la cantidad de discapacitados a causa de alteraciones metabólicas será alarmante. En esta revisión se pretenden establecer las causas del síndrome metabólico, los mecanismos que se alteran para conducirá diabetes mellitus, y se mencionan los mecanismos fisiológicos que se alteran en la condición de hiperglucemia. Y dentro de las consecuencias que resultan de esta enfermedad, analizar una de las que más cuesta al paciente y a la familia como lo es el pie diabético.


Abstract Mexico currently occupies the first place with childhood obesity and the second with adult obesity. This phenomenon has already reached pandemic levels so if the increasing number of obese patients is not prevented, in a fewyears the number of patients with disabilities resulting from metabolic alterations will be alarming. This review aims to establish the causes of the metabolic syndrome, the mechanisms that are altered and lead to diabetes mellitus, also we will mention the physiological mechanisms altered in hyperglycemia and its consequences. We will analyze one of the diseases with the highest costs for the patient and their family: the diabetic foot.

2.
Pharmacol Biochem Behav ; 101(4): 544-52, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22386964

RESUMEN

In mammals, there is an underlying mechanism that dictates the organism's biological functions and daily activity schedule, known as circadian rhythms, which play a major role in maintaining steady metabolism, homeostasis, and immunity. Limited research has been done investigating the effects of continuous opiate administration on the circadian rhythm activity pattern. A change in circadian activity pattern is suggested as an experimental model to demonstrate long-term effect of the drug. The objective of this study was to investigate the effects of morphine treatment on the long term activity (24 h) of the animal as well as the activity after abrupt removal, since prescribed medication containing morphine is widely used and abused and its long term effects are not known. Male Sprague-Dawley rats were contained in stable conditions with a standard light/dark cycle recordings taken before, during and after morphine pellet implantation. Cosinor analysis was used to fit a 24-hour curve to the activity pattern. Results indicate that morphine pellet administration alters the mesor, amplitude, the day-time and night-time activity levels, and demonstrates a remarkable change in the maximal circadian rhythm timing during the withdrawal period. The question whether morphine changes the circadian rhythm or a change in circadian rhythm results in tolerance and withdrawal is discussed.


Asunto(s)
Ritmo Circadiano/efectos de los fármacos , Morfina/administración & dosificación , Actividad Motora/efectos de los fármacos , Animales , Conducta Animal/efectos de los fármacos , Conducta Animal/fisiología , Ritmo Circadiano/fisiología , Implantes de Medicamentos/administración & dosificación , Tolerancia a Medicamentos/fisiología , Masculino , Dependencia de Morfina/fisiopatología , Actividad Motora/fisiología , Narcóticos/administración & dosificación , Ratas , Ratas Sprague-Dawley , Síndrome de Abstinencia a Sustancias/fisiopatología
3.
Brain Res ; 1442: 76-89, 2012 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-22322149

RESUMEN

The interferons (IFNs) are an endogenous pleiotropic family of cytokines that perform fundamental physiological functions as well as protecting host organisms from disease and in maintaining homeostasis. This review covers the effects of endogenous IFN on the nervous system. It starts with the description of its receptors, followed how it modulate neuronal activity, mood, sleep, temperature, the endocrine system, the opioid system and how it regulate food consumption and the immune system. Similar to other multifunctional cytokines, an excessive or inappropriate activity of IFNs can cause toxicity and even death. Furthermore, IFNs are currently the major treatment modality for several malignant and non-malignant diseases such as chronic hepatitis C and B, multiple sclerosis, hematological malignancies, malignant melanoma, renal cell carcinoma, etc.


Asunto(s)
Encéfalo/fisiología , Interferones/fisiología , Neuronas/fisiología , Animales , Regulación del Apetito , Regulación de la Temperatura Corporal , Encéfalo/metabolismo , Depresión/inducido químicamente , Depresión/fisiopatología , Sistema Endocrino/fisiología , Humanos , Sistema Inmunológico/fisiología , Interferones/efectos adversos , Interferones/uso terapéutico , Trastornos Relacionados con Opioides/metabolismo , Receptores de Interferón/metabolismo , Sueño
4.
Rev. Fac. Med. UNAM ; 54(4): 24-33, jul.-ago. 2011. ilus, tab
Artículo en Español | LILACS | ID: biblio-956882

RESUMEN

La melatonina en algunos países se usa desde hace mucho tiempo para reducir los síntomas de algunas enfermedades neuropsiquiátricas infantiles. En adultos se toma primordialmente para combatir problemas de trastornos del sueño. Por sus propiedades antioxidantes también ha sido utilizada como coadyuvante para contrarrestar algunos tipos de cáncer. Esta hormona es usada en cremas y bloqueadores solares para la piel que prometen el antienvejecimiento celular. Los efectos secundarios producidos por el uso prologado de la melatonina no están del todo claros. Con el propósito de conocer si el uso crónico de esta hormona altera la reproducción y los eventos que a ésta subyacen (como lo es la fertilidad), se propuso revisar la influencia que tiene sobre el eje reproductor de mamíferos masculinos, incluyendo al ser humano.


In some countries melatonin is chronically used to reduce the symptoms of certain neuropsychiatric diseases in children. Adults consume it mainly to treat sleep disorders. Due to its antioxidant properties, it has also been used in the treatment of some types of cancer. This hormone is used in dermal creams and sunscreens, which promise an antiaging effect on cells. Side effects provoked by long-term use of melatonin are not completely clear. In order to know whether the chronic use of this hormone alters reproduction and the events underlying it, fertility for instance, a review of the influence that melatonin has on the reproductive axis of male mammals, including humans, was proposed.

5.
Salud ment ; 33(6): 535-542, nov.-dic. 2010.
Artículo en Español | LILACS-Express | LILACS | ID: lil-632813

RESUMEN

In this second paper of the Brain, Drugs and Genes review we would like to discuss illicit drugs and the genetics that may predispose subjects to addiction. We describe the effects, action sites and pathophysiological consequences of the use of these illicit drugs. The drugs that are reviewed are marijuana, heroin, cocaine, methamphetamine and 3,4-methylenedioxymethamphetamine or MDMA, also known as ecstasy. All of them cause an effect on the brain, modifying the activity of the neuronal systems, altering the activity or availability of the neurotransmitters or emulating their actions. The risk of dependence is related to the velocity with which these drugs induce plastic changes in the brain, very much like a learning process. Such changes underlie the patient's dependence to drugs. Therefore when a long term user quits and deprives the brain abruptly of these drugs, an abstinence syndrome is precipitated and it may be quite severe. Only for marijuana it seems to be mild, misleading people to believe this drug does not cause physical dependence. Marijuana (Cannabis sativa) is a plant which has its active principle A9-tetrahydrocannabinol (THC) in almost all its parts, i. e. the flowers, stems, seeds and leaves. It actually contains over 60 cannabinoids as well as other chemical compounds. Marijuana causes euphoria followed by relaxation and several other reinforcing effects. Among the adverse effects marijuana causes: alteration of short-term memory, slowness of reflexes, depression and anxiety, bronchitis and lung infections. Marijuana effects depend on the activation of the CB1 and CB2 receptors, distributed in the entire body. The CB1 receptor is mainly present in the brain. In medicine, A9-THC has been useful in treating symptoms caused by chemotherapy, and in treating the anorexia caused by the Acquired Immune Deficiency Syndrome. Also, an antagonist of the CB1 receptor, Rimonabant, has been used to treat morbid obesity with certain degree of success. However, despite this promising application of Rimonabant, the side effects it caused led to its withdrawal from the market in Europe, Canada and Mexico. Heroin, derived from morphine, which in turn is isolated from opium, causes euphoria and analgesia, suppresses hunger, increases energy and induces sleepiness. The adverse effects are liver and kidney diseases as well as a decrease in breathing and heart rates. This drug acts on the opioid receptors: MOR, DOR and KOR. Cocaine, derived from the coca plant (Erythroxylum coca) produces immediate rewarding effects that last between 30 to 60 min, and causes anxiety once its serum concentration drops. Due to its very short half-life, it is the most addictive of all drugs. Cocaine reduces hunger, thirst and sleep. The most used forms of cocaine are powder and crack (available as rock). The mechanism of action by which cocaine and related compounds induce their effects is the blockade of the dopamine transporter at the synapsis, leaving dopamine available for a longer time at the synapses of the motivation-reward system. Cocaine and related compounds induce blood vessel constriction, muscular spasm, chest pain, and an increase in heart rate and blood pressure, thus augmenting the risk of cardiac arrest and stroke. The methamphetamine, a synthetic stimulant, is a crystalline, odorless, bitter drug which causes a pleasant feeling and euphoria. Its action mechanism is the blockade of the dopamine transporter, same as cocaine. The effects pursued by the users of crystal methamphetamine are increased alertness, increase in physical activity and decrease in hunger. Its side effects include increase in body temperature, heart rate and blood pressure, thus augmenting the risk for stroke. Methamphetamine also triggers violent behavior, anxiety, irritability, confusion, paranoia and hallucinations. This compound has been used for medical reasons, such as in the treatment of narcolepsy and obesity. 3,4-methylenedioxymethamphetamine, MDMA or ecstasy, is a synthetic compound with stimulant and hallucinatory effects. Its action is exerted mainly on the serotonin transporter, leaving serotonin available at the synapsis for a longer time. After clearance from the bloodstream this drug causes severe depression. Ecstasy is also combined with other stimulants. All the drugs discussed here induce body changes that compromise the life of the user, or his health at the very least. Despite this fact, the highly reinforcing effects the drugs produce by over activating the motivation-rewarding system compel their repetitive use. Not all users, however, are equally vulnerable to becoming addicted or respond the same way to the use of drugs. The individual response depends, in part, on genetic factors, as we discuss in the following section. It is evident that not only environmental factors account for the vulnerability to addiction. Genetic factors also have a substantial contribution. In order to facilitate the understanding of the interaction environment-gene, we define the following concepts: gene, allele, mutation, polymorphism, heritability and epigenesis. Apparently, the genetic contribution to addiction vulnerability varies depending on the drug. For example, cocaine and opiates are much more dependant on genetic factors to trigger addiction than are nicotine, alcohol or marijuana. Mutations or polymorphisms carried by several genes might make the difference between being at high or low risk for addiction. They may also underlie the degree of response to rehabilitation treatments. Addiction, then, is a result of an interaction between environment and genes. Environmental demands make the organism modify its structure and physiology in order to cope efficiently to such demands. One crucial way to do so is by changing gene expression. Changes in gene expression may be a consequence of chemical rearrangements in the chromatin structure, which lead to transcriptional modifications that affect the expression of the proteins the genes encode. Consequently, the normal functions of such proteins in different systems are also altered. These adaptive rearrangements in the chromatin structure are called epigenesis. The epigenetic changes induced by environmental stimuli have been proved to affect the expression of several neurotransmitter receptors and trophic factors, among many other molecules crucial for the proper functioning of the Central Nervous System. Hence, these chromatin's structural changes, triggered by environmental demands, are most likely to help the subject cope with such specific demands. However, this adaptation is not free of charge, and requires a toll to be paid which is: vulnerability to addiction. Finally, one question arises: Who is the person most likely to seek a drug of abuse? Statistics have shown that those patients suffering from a psychiatric illness. This hypothesis suggests that addiction is a symptom or a disease caused by a psychiatric illness such as a personality disorder, depression or schizophrenia. Hence, at the end, drug addiction would be a co-morbid entity, generating what in Spanish we call the dual-disease. On the other hand, the self-medication hypothesis also makes sense, at least for an extensive group of patients. This hypothesis suggests that patients take drugs of abuse to relief the symptoms caused by their psychiatric pathology. The present review discusses the interaction between brain circuits, drugs and genes to generate an addict patient. We do not intend to revise each field exhaustively, but rather we intend to give the reader a general scenario on the convergence of these three worlds. Thus it may be better understood how addiction develops and how it may be treated.


En este segundo artículo sobre el tema reseñamos brevemente las drogas de abuso ilícitas. Describiremos también cómo la genética contribuye en forma importante en el desarrollo de la adicción. La marihuana (Cannabis sativa) es una de las drogas más populares entre los jóvenes. Se presenta para su consumo en dos formas: hachís, como un triturado de la planta seca y como aceite. Una vez consumida, sus efectos tardan en aparecer según la vía de administración. Por ejemplo, cuando se inhala, sus efectos aparecen en unos cuantos segundos. Después de que el principio activo de la marihuana (A9-THC) llega al cerebro y se une a sus receptores (CB1), produce euforia seguida de relajación, se perciben más intensamente los olores, los sabores y los sonidos y parece que el tiempo pasa lentamente. Su consumo, al igual que todas las drogas de abuso, tiene efectos adversos. Sin embargo, la marihuana cuenta con un potencial uso en la medicina por sus propiedades antieméticas, orexigénicas y analgésicas. La heroína es derivada de la morfina (ingrediente activo del opio, Papaver somniferum). El opio se fuma o se utiliza como un extracto disuelto en alcohol (láudano), y la heroína se aspira o fuma. Sus efectos aparecen rápidamente e incluyen euforia, aumento de la energía, supresión del hambre, analgesia y somnolencia. La heroína, así como el opio y la morfina, ejercen su efecto a través de los receptores opioides. Su consumo deteriora el hígado, los riñones, los pulmones y el corazón. La cocaína (Erythroxylum coca) es una droga estimulante altamente adictiva. Al consumirla se experimenta mejoría de la autoestima y la auto-confianza, acompañada de excitación. Estos efectos son inmediatos y duran entre 30 y 60 minutos y son consecuencia de la inhibición de la recaptura de dopamina. Adicionalmente la cocaína inhibe el apetito y el sueño. Sus efectos adversos son la contracción de los vasos sanguíneos, espasmos musculares, dolor de pecho, embolias o derrames cerebrales, aumento en la frecuencia cardiaca y muerte. La metanfetamina se sintetiza fácilmente a partir de la anfetamina (derivado de la efedrina), lo que facilita su fabricación en laboratorios clandestinos. Cuando se fuma o se inyecta por vía intravenosa produce una sensación sumamente placentera (<

6.
Neurosci Lett ; 448(1): 56-61, 2008 Dec 19.
Artículo en Inglés | MEDLINE | ID: mdl-18951952

RESUMEN

Neuronal death during brain aging results, at least in part, from the disruption of synaptic connectivity caused by oxidative stress. Synaptic elimination might be caused by increased instability of the neuronal processes. In vitro evidence shows that melatonin increases MAP-2 expression, a protein that improves the stability of the dendritic cytoskeleton, opening the possibility that melatonin could prevent synaptic elimination by increasing dendritic stability. One way to begin exploring this issue in vivo is to evaluate whether long-term melatonin treatment changes the intensity of MAP-2 immuno-staining in areas commonly afflicted by aging that are rich in dendritic processes. Accordingly, we evaluated the effects of administering melatonin for 6 or 12 months on the intensity of MAP-2 immuno-staining in the strata oriens and lucidum of the hippocampal CA1 and CA3 fields of aging male rats, through semi-quantitative densitometry. Melatonin treated rats showed a relative increment in the intensity of MAP-2 immuno-staining in both regions after 6 or 12 months of treatment, as compared with age matched control rats. Although melatonin untreated and treated rats showed a decrease of MAP-2 immuno-staining in the hippocampus with increasing age, such decrement was less pronounced following melatonin treatment. These findings were confirmed by qualitative Western blot analyses. The melatonin effect seems specific because MAP-2 staining in the primary somatosensory cortex was not affected by the treatment. Thus, chronic melatonin administration increases MAP-2 immuno-staining and attenuates its decay in the adult aging hippocampus. These results are compatible with the idea that melatonin could improve dendritic stability and thus diminish synaptic elimination in the aging brain.


Asunto(s)
Envejecimiento/fisiología , Antioxidantes/farmacología , Regulación hacia Abajo/efectos de los fármacos , Hipocampo/efectos de los fármacos , Melatonina/farmacología , Proteínas Asociadas a Microtúbulos/metabolismo , Animales , Hipocampo/anatomía & histología , Masculino , Ratas , Ratas Wistar , Estadísticas no Paramétricas , Factores de Tiempo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...